Pre_GI: SWBIT SVG BLASTP

Query: NC_012438:1514376 Sulfurihydrogenibium azorense Az-Fu1 chromosome, complete genome

Lineage: Sulfurihydrogenibium azorense; Sulfurihydrogenibium; Hydrogenothermaceae; Aquificales; Aquificae; Bacteria

General Information: This strain was isolated from a terrestrial hot spring in the Azores, where it was living at temperatures between 65 degrees C and 70 degrees C. Hydrogen-oxidizing thermophile. Sulfurihydrogenibium azorense is a thermophilic bacterium that is able to use hydrogen and sulfur compounds as electron donors. This organism is also able to use ferric iron and arsenate as electron acceptors. This is the first pure culture terrestrial member of the Aquificales group, isolated by dilution-to-extinction methods.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_018870:1417851 Thermacetogenium phaeum DSM 12270 chromosome, complete genome

Lineage: Thermacetogenium phaeum; Thermacetogenium; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Nitrogen fixation. Thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. Capable of growing with various substrates such as alcohols and methylated nitrogen compounds, and to reduce sulfate in the presence of acetate. Isolated from sludge of an anaerobic digester run at 58 degrees C. Thermacetogenium phaeum is a strictly anaerobic, homoacetogenic bacterium. It is exceptional because it can use the homoacetogenic Wood-Ljungdahl (CO- dehydrogenase) pathway both for acetate formation and acetate oxidation. Acetate oxidation is possible only in syntrophic cooperation with a methanogenic partner which maintains a low hydrogen and/or formate concentration in the coculture. With this, the bacterium operates close to the thermodynamic equilibrium of substrate conversion, similar to other syntrophically fermenting bacteria such as Syntrophomonas wolfei the genomes of which have been sequenced as well in the recent past.