Pre_GI: SWBIT SVG BLASTP

Query: NC_012438:1514376 Sulfurihydrogenibium azorense Az-Fu1 chromosome, complete genome

Lineage: Sulfurihydrogenibium azorense; Sulfurihydrogenibium; Hydrogenothermaceae; Aquificales; Aquificae; Bacteria

General Information: This strain was isolated from a terrestrial hot spring in the Azores, where it was living at temperatures between 65 degrees C and 70 degrees C. Hydrogen-oxidizing thermophile. Sulfurihydrogenibium azorense is a thermophilic bacterium that is able to use hydrogen and sulfur compounds as electron donors. This organism is also able to use ferric iron and arsenate as electron acceptors. This is the first pure culture terrestrial member of the Aquificales group, isolated by dilution-to-extinction methods.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.