Pre_GI: SWBIT SVG BLASTP

Query: NC_012125:326909 Salmonella enterica subsp. enterica serovar Paratyphi C strain

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: The genome of this strain harbors a large pathogenicity island, SPI7, with genes coding for the Vi (virulence) antigen and other genes potentially associated with virulence. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007946:258747 Escherichia coli UTI89, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain (UTI89) is a uropathogenic strain isolated from a woman with uncomplicated cystitis (bladder inflammation) that has been demonstrated to cause cystitis in a murine urinary tract infection model. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.