Pre_GI: SWBIT SVG BLASTP

Query: NC_012026:75812 Anaplasma marginale str. Florida, complete genome

Lineage: Anaplasma marginale; Anaplasma; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Anaplasma marginale str. Florida. was isolated from pooled blood samples from naturally infected cattle in Florida. The Florida strain is virulent and non-tick transmitted. This organism is the causative agent of bovine anaplasmosis and is an obligate intracellular pathogen. Transmission occurs via an arthropod vector (tick) and is a major problem in tropical regions where it causes severe morbidity in cattle populations. The bacterium lives intracellularly within membrane-bound vesicles in the host erythrocyte, a cell type which it specifically targets, resulting in severe anemia for the host organism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005956:1402500 Bartonella henselae str. Houston-1, complete genome

Lineage: Bartonella henselae; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella henselae str. Houston-1 (ATCC 49882) was isolated from human blood in Houston Texas. Causative agent of cat scratch fever. This group of alpha proteobacteria are unique among pathogens in that they cause angiogenic lesions. This organism was identified as the causative agent of cat scratch fever, a disease found commonly in children or in immunocompromised adults. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells.