Pre_GI: SWBIT SVG BLASTP

Query: NC_011992:717107 Acidovorax ebreus TPSY, complete genome

Lineage: Acidovorax ebreus; Acidovorax; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Acidovorax ebreus is able to anaerobically oxidize iron and uranium when coupled with the reduction of nitrate. Acidovorax ebreus sp. TPSY may be important for the remediation of uranium in contaminated environments. Isolated from groundwater collected from the U.S. Department of Energy Integrated Field Research Challenge site at Oak Ridge, TN, USA.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006958:179690 Corynebacterium glutamicum ATCC 13032, complete genome

Lineage: Corynebacterium glutamicum; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Causes bovine brucellosis. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a well-studied soil bacterium of considerable importance in biotechnology, in particular for the fermentative production of L-amino acids for food and fodder industry. The name was originaly given for this species for its ability to produce significant quantities (>100 g per liter) of glutamic acid (glutamate), an important food enhancer that has a meaty taste and flavor. Currently used commercially to produce glutamate and other amino acids (L-lysine) and compounds. The first strain of the species was isolated in 1957 by S. Kinoshita and colleagues while searching for an efficient glutamate-producer.