Pre_GI: SWBIT SVG BLASTP

Query: NC_011988:1036618 Agrobacterium vitis S4 chromosome 2, complete genome

Lineage: Agrobacterium vitis; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Agrobacterium vitis is the causative agent of crown gall disease in grapes. Agrobacterium are Gram-negative, motile, soil-dwelling plant pathogens with the species name given based on the disease phenotype associated with the bacteria. Disease causing Agrobacterium spp. possess a tumor-inducing (Ti) plasmid, which carries genes for the formation of opines. A segment of the Ti plasmid gets transferred to the plant cell and integrates into the host cell genome. The plant cell then starts synthesizing opines, which can be catabolized by Agrobacterium spp, but not by the plant cells.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_016047:261304 Bacillus subtilis subsp. spizizenii TU-B-10 chromosome, complete

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system. The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.