Pre_GI: SWBIT SVG BLASTP

Query: NC_011985:194973 Agrobacterium radiobacter K84 chromosome 1, complete genome

Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain has been developed for worldwide commercial use to control crown gall. This species is used commercially to control crown gall, a tumorogenic plant disease caused by the ubiquitous soil-borne pathogen Agrobacterium tumefaciens, which affects susceptible woody plants worldwide. The pathogen is responsible for nursery and orchard losses among stone fruit trees, grapes, apples, pears, nut trees, caneberries, clematis, hops, kiwifruit, persimmons, roses and many ornamental annuals, trees and shrubs. Infected plants are usually weakened and unproductive due to their damaged root system.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_001263:2461941 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.