Pre_GI: SWBIT SVG BLASTP

Query: NC_011901:3072817 Thioalkalivibrio sulfidophilus HL-EbGr7 chromosome, complete

Lineage: Thioalkalivibrio sulfidophilus; Thioalkalivibrio; Ectothiorhodospiraceae; Chromatiales; Proteobacteria; Bacteria

General Information: Obligately chemolithoautotrophic, haloalkaliphilic, mesophilic, microaerophilic and sulfur-oxidizing bacterium. Uses CO2 as a carbon source and reduced inorganic sulfur compounds as an energy source. Utilizes ammonium and urea, but not nitrate or nitrite, as a N-source. Isolated from a full-scale Thiopaq bioreactor in the Netherlands used to remove H2S from biogas. Thioalkalivibrio species are commonly isolated from soda lakes and tend to dominate the microbial community of hypersaline soda lakes. These organisms have a pH optimum of 10 and are able to oxidize hydrogen sulfide to elemental sulfur. Thioalkalivibrio species have also been isolated from sulfide oxidizing bioreactors which remove sulfide from refinery and natural gas.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014228:3391500 Xenorhabdus nematophila ATCC 19061, complete genome

Lineage: Xenorhabdus nematophila; Xenorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This genus is a group of insect pathogens which live in a mutualistic relationship with the soil nematode family, Steinernematidae. Free-living, juvenile Steinernema spp. enter insect larvae through the digestive tract. They penetrate the larvae body cavity and release Xenorhabdus spp. into the hemolymph (blood). The bacteria multiply rapidly, killing the larvae, and providing suitable nutrient conditions for the growth and reproduction of the Steinernema spp. The nematode matures and reproduces. The new juveniles reassociate with Xenorhabdus spp. and are released into the soil. Unlike Xenorhabdus bovienii, which is found in different Steinernema spp., Xenorhabdus nematophila is associated specifically with Steinernema carpocapsae and can be used as a model for studying host specificity.