Pre_GI: SWBIT SVG BLASTP

Query: NC_011896:2240990 Mycobacterium leprae Br4923, complete genome

Lineage: Mycobacterium leprae; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from a human skin biopsy in Brazil, and passaged in nude mice and armadillos. The bacterium is a close relative of M. tuberculosis. However, compared to the latter, the genome of M. leprae is smaller due to reductive genome evolution, with many important metabolic activities including siderophore production, part of the oxidative chain, most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits eliminated due to extensive recombination events between dispersed repetitive sequences. It is evident that this species has undergone massive genome reduction over time as a result of its parasitic nature, discarding more than half its genes and rendering it the most striking example of genome reduction in a microbial pathogen.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003112:149593 Neisseria meningitidis MC58, complete genome

Lineage: Neisseria meningitidis; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: The B serogroup is responsible for many of the meningitis outbreaks in the developed world. This strain was isolated from a case of invasive infection. Causes septicemia and meningitis. The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.