Pre_GI: SWBIT SVG BLASTP

Query: NC_011886:2696671 Arthrobacter chlorophenolicus A6, complete genome

Lineage: Arthrobacter chlorophenolicus; Arthrobacter; Micrococcaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Arthrobacter chlorophenolicus A6 (DSM 12829) was isolated from soil at Fort Collins, Colorado, USA and is able to use 4-chlorophenol as a sole source of carbon and energy. This organism can degrade 4-chlorophenol in soil at temperatures ranging from 5 to 28 degrees C making it a good candidate for bioremediation. Arthrobacter chlorophenolicus can degrade high concentrations of para-substituted phenols, such as 4-chlorophenol and 4-nitrophenol and can survive under harsh conditions, such as cold temperature and during starvation in soil.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004369:371109 Corynebacterium efficiens YS-314, complete genome

Lineage: Corynebacterium efficiens; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This is the type strain of C. efficiens isolated by researchers of Ajinomoto food company from soils at Kanagawa, Japan in the late 1980's. The strain can grow and produce glutamate at temperatures above up to 45oC in contrast to C. glutamicum that is only efficient at around 30oC. This feature is very beneficial for industrial applications, because less heat removal is required in fermenters to be used for cultivation of these bacteria. Glutamate-producing bacterium. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a recently proposed new species of the genus capable of producing significant quantities of glutamic acid (glutamate), an important enhancer of taste in the food industry. It is currently used commercially to produce glutamate and other amino acids and compounds.