Pre_GI: SWBIT SVG BLASTP

Query: NC_011883:2680380 Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774,

Lineage: Desulfovibrio desulfuricans; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 was isolated from the rumen of a sheep. D. desulfuricans reduces sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. This organism grows anaerobically and utilizes a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. The nitrate reduction pathway is not expressed while sulfate is available. Alternatively, the sulfate reduction pathway is constitutively expressed when the cells are growing with nitrate reduction. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making this organism of interest as bioremediator. Metal corrosion, a problem that is partly the result of the collective activity of this bacterium, results in billions of dollars in losses each year to the petroleum industry. This organism is responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006177:835459 Symbiobacterium thermophilum IAM 14863, complete genome

Lineage: Symbiobacterium thermophilum; Symbiobacterium; Shewanellaceae; Clostridiales; Firmicutes; Bacteria

General Information: This symbiotic and thermophilic bacterium was discovered by screening for thermostable tryptanophases in Japanese compost. Cultured growth of this organism requires the presence of another bacterial species, such as a Bacillus or Escherichia coli, which provides diffusable metabolites required for its growth. Pure cultures can be obtained by growing Symbiobacterium thermophilum in a bioreactor, separated from its symbiotic counterpart by a dialysis membrane. Because of its symbiotic nature, it cannot be cultured with conventional methods. Despite a negative reaction for gram stain, this species is placed with the gram-positive bacteria based on 16s phylogenetic analysis.