Pre_GI: SWBIT SVG BLASTP

Query: NC_011837:830436 Clostridium kluyveri NBRC 12016, complete genome

Lineage: Clostridium kluyveri; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Involved in production of caproic acid in co-culture with a methanogen. Clostridium kluyveri was enriched from mud in a co-culture with Methanobacterium omelianskii. When grown on ethanol C. kluyveri produce caproic acid in addition to acetic acid. This organism is able to grow anaerobically on ethanol and acetate as sole energy sources.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_001263:2236777 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.