Pre_GI: SWBIT SVG BLASTP

Query: NC_011761:2457560 Acidithiobacillus ferrooxidans ATCC 23270 chromosome, complete

Lineage: Acidithiobacillus ferrooxidans; Acidithiobacillus; Acidithiobacillaceae; Acidithiobacillales; Proteobacteria; Bacteria

General Information: This organism was isolated from bituminous coal mine effluent. Acidophilic iron-oxidizing bacterium. Acidithiobacillus ferrooxidans, formerly Thiobacillus ferrooxidans, is an acidophilic iron-oxidizing bacterium that is able to grow at a pH range of 1.3 to 4.0. This organism is often identified in acid mine drainage and as a member of microbial consortia involved in bioleaching. Acidithiobacillus ferrooxidans has been identified as the dominant microorganism in percolation and continuous flow mineral leaching bioreactors.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008278:1876435 Frankia alni ACN14a, complete genome

Lineage: Frankia alni; Frankia; Frankiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from a green alder (Alnus crispa) growing in Tadoussac, Canada. These bacteria were originally linked to fungi, because of the mycelium-like filaments many of them form. This bacterium is able to establish a nitrogen-fixing symbiosis with alder (Alnus spp.) and myrtle (Myrica spp.), two pioneer plant genera of temperate regions, found on forest clearings, mine wastes, sand dunes and glacial moraines where nitrogen is the limiting factor. Frankia alni causes root hair deformation: it penetrates the cortical cells and induces the formation of nodules which resemble those induced by Rhizobium in legumes. These nodules are then colonized by vegetative hyphae (mycelium filaments) which differentiate into diazo-vesicles