Pre_GI: SWBIT SVG BLASTP

Query: NC_011745:3197584 Escherichia coli ED1a chromosome, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Isolated in the 2000s from the faeces of a healthy man in France. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006142:33268 Rickettsia typhi str. Wilmington, complete genome

Lineage: Rickettsia typhi; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, is composed of obligate intracellular pathogens. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host. Rickettsia typhi causes murine typhus and is an obligate intracellular pathogen that infects both the flea vector and hosts such as human, rat, and mouse. In the flea vector, the bacterium penetrates the gut epithelial barrier and is found in the feces which become infective.