Pre_GI: SWBIT SVG BLASTP

Query: NC_011725:334000 Bacillus cereus B4264 chromosome, complete genome

Lineage: Bacillus cereus; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain was isolated in 1969 from a case of fatal pneumonia in a male patient. B. cereus B4264 was cultured from the blood and the pleural fluid. This organism is a soil-dwelling opportunistic pathogen that causes food poisoning in infected individuals. The rapid onset is characterized by nausea and vomiting while the late onset is characterized by diarrhea and abdominal pain. The emetic disease is caused by a small stable dodecadepsipeptide cerulide whereas the diarrheal disease is caused by a heat labile enterotoxin. Some strains produce a potent cytotoxin that forms a pore in the membrane of eukaryotic cells and causes necrotic enteritis (death of intestinal epithelial cells) while the unique tripartite membrane lytic toxin hemolysin BL contributes to the diarrheal disease and destructive infections of the eye.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006510:310212 Geobacillus kaustophilus HTA426, complete genome

Lineage: Geobacillus kaustophilus; Geobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Geobacillus kaustophilus strain HTA426 was first isolated from deep sea sediment of the Mariana Trench in the Pacific Ocean and belongs to a closely related group of thermophilic Bacillus spp. Members of this genus were originally classified as Bacillus. Recent rDNA analysis and DNA-DNA hybridization studies using spore-forming thermophilic subsurface isolates provided enough evidence to define the phylogenetically distinct, physiologically and morphologically consistent taxon Geobacillus. Geobacillus species are chemo-organotrophic, obligately thermophilic, motile, spore-forming, aerobic or facultatively anaerobic. This organism was compared with mesophilic Bacillus spp. to identify genome characteristics and specific genes related to thermophilia. Analysis of the amino acid compositions showed clear differences between Geobacillus kaustophilus and the mesophilic bacilli. In addition, the higher G+C content in Geobacillus kaustophilus rRNA also appears correlated to thermophilia. In addition, tRNA modification by the Geobacillus kaustophilus specific tRNA methyltransferases probably aids in the thermoadaptation of this organism.