Pre_GI: SWBIT SVG BLASTP

Query: NC_011601:2139188 Escherichia coli O127:H6 str. E2348/69 chromosome, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Enteropathogenic Escherichia coli (EPEC) is an important cause of fatal infant diarrhea. EPEC induces diarrhea by attaching and effacing to host cells in the small intestine, inducing cytoskeletal rearrangements that result in pedastel formation, and then by introducing toxins into the host cell. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012779:1286500 Edwardsiella ictaluri 93-146, complete genome

Lineage: Edwardsiella ictaluri; Edwardsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Edwardsiella ictaluri is the causative agent of enteric septicemia in catfish (ESC), an economically significant disease of farm-raised catfish. The acute form of ESC causes bacterial septicemia (proliferation of bacteria in the blood) which rapidly leads to death. The chronic form of this disease causes a characteristic head lesion, and may also proceed to septicemia and death. Two plasmids, which are consistently present in Edwardsiella ictaluri isolates, have been sequenced. Both plasmids contain genes for the type III secretory system, which is involved in translocating pathogenicity proteins into the eukaryotic cell.