Pre_GI: SWBIT SVG BLASTP

Query: NC_011593:333488 Bifidobacterium longum subsp. infantis ATCC 15697 chromosome,

Lineage: Bifidobacterium longum; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: This strain was isolated from human infant feces. Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes. Bifidobacterium longum is found in adult humans and formula fed infants as a normal component of gut flora.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006177:835459 Symbiobacterium thermophilum IAM 14863, complete genome

Lineage: Symbiobacterium thermophilum; Symbiobacterium; Shewanellaceae; Clostridiales; Firmicutes; Bacteria

General Information: This symbiotic and thermophilic bacterium was discovered by screening for thermostable tryptanophases in Japanese compost. Cultured growth of this organism requires the presence of another bacterial species, such as a Bacillus or Escherichia coli, which provides diffusable metabolites required for its growth. Pure cultures can be obtained by growing Symbiobacterium thermophilum in a bioreactor, separated from its symbiotic counterpart by a dialysis membrane. Because of its symbiotic nature, it cannot be cultured with conventional methods. Despite a negative reaction for gram stain, this species is placed with the gram-positive bacteria based on 16s phylogenetic analysis.