Pre_GI: SWBIT SVG BLASTP

Query: NC_011374:325507 Ureaplasma urealyticum serovar 10 str. ATCC 33699 chromosome,

Lineage: Ureaplasma urealyticum; Ureaplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Causes a wide range of infections of the urogenital or respiratory tracts. Ureaplasma urealyticum is part of the normal flora of the human urogenital tract. This organism, however, can cause urethritis and has been associated with spontaneous abortion, premature birth, meningitis, and a severe respiratory disease of premature infants. U. urealyticum strains exhibit antigenic heterogeneity. Isolates obtained from human urogenital tract have been classified into 14 recognized serovars which show no serological cross-reactivity with ureaplasmas from other hosts and uniquely express human immuoglobulin A1 protease activity.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_001263:2461941 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.