Query: NC_011184:325797 Vibrio fischeri MJ11 chromosome I, complete sequence

Lineage: Aliivibrio fischeri; Aliivibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: This strain was isolated from a pinecone fish, Monocentris japonica, light-emitting organs in Japan. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. This organism is found in marine environments and was originally named by Bernard Fischer during a sea voyage in the 1800s. It is a symbiont in fish and squids and is responsible for light generation in those organisms, which use it as a defense mechanism to avoid predators.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_018870:1417851 Thermacetogenium phaeum DSM 12270 chromosome, complete genome

Lineage: Thermacetogenium phaeum; Thermacetogenium; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Nitrogen fixation. Thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. Capable of growing with various substrates such as alcohols and methylated nitrogen compounds, and to reduce sulfate in the presence of acetate. Isolated from sludge of an anaerobic digester run at 58 degrees C. Thermacetogenium phaeum is a strictly anaerobic, homoacetogenic bacterium. It is exceptional because it can use the homoacetogenic Wood-Ljungdahl (CO- dehydrogenase) pathway both for acetate formation and acetate oxidation. Acetate oxidation is possible only in syntrophic cooperation with a methanogenic partner which maintains a low hydrogen and/or formate concentration in the coculture. With this, the bacterium operates close to the thermodynamic equilibrium of substrate conversion, similar to other syntrophically fermenting bacteria such as Syntrophomonas wolfei the genomes of which have been sequenced as well in the recent past.