Pre_GI: SWBIT SVG BLASTP

Query: NC_011094:2172271 Salmonella enterica subsp. enterica serovar Schwarzengrund str

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This serovar is the predominant cause of Salmonellosis in Southeast Asia, a major source of imported food products to the USA. It was also the cause of the first recognized outbreak of fluoroquinolone-resistant salmonellosis in the USA. Recent reports suggest that high-level fluoroquinolone resistance is emerging in S. Schwarzengrund in different parts of the world. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010531:292044 Polynucleobacter necessarius STIR1, complete genome

Lineage: Polynucleobacter necessarius; Polynucleobacter; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain is an obligate intracellular endosymbiont of the cilliate Euplotes aediculatus. This group of organisms is common in freshwater, comprising up to 60% of the bacteria in freshwater habitats. Polynucleobacter species are also known to be endosymbionts of ciliates. These strains live within the cytoplasm and are essential for their host organisms.