Pre_GI: SWBIT SVG BLASTP

Query: NC_011083:862901 Salmonella enterica subsp. enterica serovar Heidelberg str. SL476,

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This is a multidrug resistant strain. Salmonella enterica subsp. enterica serovar Heidelberg is one of the more common serovars causing disease in the USA. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011958:1121387 Rhodobacter sphaeroides KD131 chromosome 2, complete genome

Lineage: Rhodobacter sphaeroides; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to grow using photosynthesis, chemosynthesis, and usually can grow under both anaerobic and aerobic conditions. The most extensively studied bacteria with regards to its photosynthetic capabilities which includes the structure, function and regulation of its photosynthetic membranes, its mechanisms of CO2 and nitrogen fixation, cytochrome diversity and its electron transport systems. It can grow aerobically and anaerobically in the light and anaerobically in the dark. It produces an intracytoplasmic membrane system consisting of membrane invaginations where the light harvesting complexes (LH1 and LH2) and the reaction center are synthesized. Furthermore, it has the ability to detoxify metal oxides and oxyanions and hence has a role in bioremediation.