Pre_GI: SWBIT SVG BLASTP

Query: NC_010943:1379707 Stenotrophomonas maltophilia K279a, complete genome

Lineage: Stenotrophomonas maltophilia; Stenotrophomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: Stenotrophomonas maltophilia K279a was isolated from blood infection. This species is an uncommon but serious source of infection in patients with breathing tubes such as endotracheal or tracheostomy tubes, or with chronically indwelling urinary catheters. Although the organism can colonize the devices without causing an infection, under certain conditions it can cause pneumonia, urinary tract infections, or an infection of the blood. This organism can also cause infection in immunocompromised patients. It has resistance to many commonly used antibiotics and therefore is often difficult to eradicate. Most strains are resistant to co-trimoxazole.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009800:289000 Escherichia coli HS, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain (HS; serotype O9) is a human commensal that was originally isolated from a laboratory scientist at Walter Reed Army Institute of Research in 1978 (Levine, 1978). Strain HS colonizes the human gastrointestinal tract in challenge experiments, but no overt signs of disease occur. Thus, this strain represents a genomic baseline for human gastrointestinal tract colonization. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.