Pre_GI: SWBIT SVG BLASTP

Query: NC_010803:2474554 Chlorobium limicola DSM 245, complete genome

Lineage: Chlorobium limicola; Chlorobium; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: Isolated from Gilroy Hot Spring. The green sulfur bacteria (GSB; Phylum Chlorobi ) are commonly found in illuminated, stratified, and anoxic aquatic environments, sediments, and other sulfide-rich environments including hot springs. This bacterium has been used to model a variety of enzyme and reaction center pathways, including ATP-citrate lyase, isocitrate dehydrogenase, and the reverse Krebs cycle used in photosynthesis. Now called the "reductive carbolic acid cycle", this was found to be the sole carbon dioxide assimilation pathway in other green sulfur bacteria since its discovery.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002932:1798869 Chlorobium tepidum TLS, complete genome

Lineage: Chlorobaculum tepidum; Chlorobaculum; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: This green-sulfur bacterium is a thermophile and was isolated from a New Zealand high-sulfide hot spring. Photosynthetic thermophile. Chlorobium tepidum is a member of the green-sulfur bacteria. It has been suggested that the green-sulfur bacteria were among the first photosynthetic organisms since they are anaerobically photosynthetic and may have arisen early in the Earth's history when there was a limited amount of oxygen present. This organism utilizes a novel photosynthetic system, and harvests light energy using an unusual organelle, the chlorosome, which contains an aggregate of light-harvesting centers surrounded by a protein-stabilized galactolipid monolayer that lies at the inner surface of the cytoplasmic membrane. Unlike many other photosynthetic organisms, the green-sulfur bacteria do not produce oxygen and tolerate only low levels of the molecule. This organism also fixes carbon dioxide via a reverse tricarboxylic acid cycle, using electrons derived from hydrogen or reduced sulfur to drive the reaction, instead of via the Calvin cycle like many other photosynthetic organisms.