Pre_GI: SWBIT SVG BLASTP

Query: NC_010803:2444120 Chlorobium limicola DSM 245, complete genome

Lineage: Chlorobium limicola; Chlorobium; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: Isolated from Gilroy Hot Spring. The green sulfur bacteria (GSB; Phylum Chlorobi ) are commonly found in illuminated, stratified, and anoxic aquatic environments, sediments, and other sulfide-rich environments including hot springs. This bacterium has been used to model a variety of enzyme and reaction center pathways, including ATP-citrate lyase, isocitrate dehydrogenase, and the reverse Krebs cycle used in photosynthesis. Now called the "reductive carbolic acid cycle", this was found to be the sole carbon dioxide assimilation pathway in other green sulfur bacteria since its discovery.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002516:4747154 Pseudomonas aeruginosa PAO1, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.