Pre_GI: SWBIT SVG BLASTP

Query: NC_010742:264433 Brucella abortus S19 chromosome 1, complete sequence

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta by Dr. David Bruce during an epidemic among British soldiers. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012779:261438 Edwardsiella ictaluri 93-146, complete genome

Lineage: Edwardsiella ictaluri; Edwardsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Edwardsiella ictaluri is the causative agent of enteric septicemia in catfish (ESC), an economically significant disease of farm-raised catfish. The acute form of ESC causes bacterial septicemia (proliferation of bacteria in the blood) which rapidly leads to death. The chronic form of this disease causes a characteristic head lesion, and may also proceed to septicemia and death. Two plasmids, which are consistently present in Edwardsiella ictaluri isolates, have been sequenced. Both plasmids contain genes for the type III secretory system, which is involved in translocating pathogenicity proteins into the eukaryotic cell.