Pre_GI: SWBIT SVG BLASTP

Query: NC_010725:3961981 Methylobacterium populi BJ001, complete genome

Lineage: Methylobacterium populi; Methylobacterium; Methylobacteriaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This species was isolated from tissue cultures of Populus, the Poplar tree. Colonies are pink to red, and the red pigment is water insoluble. Species of the genus Methylobacterium are strictly aerobic, facultatively methylotrophic, Gram-negative, rod-shaped bacteria that are able to grow on one-carbon compounds (e.g. methanol or methylamine), as well as on a variety of C2, C3 and C4 substrates. Only the type species, Methylobacterium organophilum, has been shown to use methane as the sole source of carbon and energy. Members of the genus are distributed in a wide variety of natural and man-made environments, including soil, air, dust, fresh- and marine water and sediments, water supplies, bathrooms, air-conditioning systems and masonry, and some are opportunistic human pathogens.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004578:895019 Pseudomonas syringae pv. tomato str. DC3000, complete genome

Lineage: Pseudomonas syringae group genomosp. 3; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: While pathogenic on Arabidopsis thaliana, it is mainly characterized as causing bacterial speck disease on tomato plants, which has a large economic impact. This organism is mainly endophytic and is a poor colonizes of plant surfaces but can multiply within the host. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.