Pre_GI: SWBIT SVG BLASTP

Query: NC_010717:1343000 Xanthomonas oryzae pv. oryzae PXO99A, complete genome

Lineage: Xanthomonas oryzae; Xanthomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain is a representative strain of race 6 isolated in the Philippines. This plant pathogen affects rice plants by causing leaf blight, a major problem in Asian countries where rice production occurs on an industrial scale. This organism enters the xylem and spreads throughout the vascular tissue of the plant, which results in wilting of the plant, or to leaf blight if the infection occurs later in development. This genus consists of plant-specific yellow-pigmented microbes, some of which are economically important phytopathogens that devastate crops such as citrus plants, rice, beans, grape, and cotton. These organisms are almost exclusively found associated with their plant hosts and are not found free in the soil. Xanthomonas oryzae contains two pathovars which cause enconomically significant diseases in rice. Xanthomonas oryzae pathovar oryzae causes bacterial leaf blight which is one of the most serious diseases of rice. This disease is common in temperate and tropical areas and can cause significant crop loss.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010473:3722571 Escherichia coli str. K-12 substr. DH10B, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.