Pre_GI: SWBIT SVG BLASTP

Query: NC_010673:479552 Borrelia hermsii DAH, complete genome

Lineage: Borrelia hermsii; Borrelia; Spirochaetaceae; Spirochaetales; Spirochaetes; Bacteria

General Information: This strain was isolated from a case of relapsing fever in western Washington, USA. Borrelia hermsii is the causative agent of tick-borne relapsing fever in the western United States and Canada. Borrelia then multiplies rapidly, causing a generalized infection throughout the tick. While feeding, the tick passes the organism into a mammalian host through its infectious saliva. Relapsing fever is characterized by a period of chills, fever, headache, and malaise, an asymptomatic period, followed by another episode of symptoms. This cycle of relapsing is due to changes in the surface proteins of Borrelia, which allow it to avoid detection and removal by the host immune system. This antigenic variation is the result of homologous recombination of silent proteins into an expressed locus, causing partial or complete replacement of one serotype with another. These plasmids carry genes involved in antigenic variation and pathogenicity.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010475:2188827 Synechococcus sp. PCC 7002, complete genome

Lineage: Synechococcus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: The cyanobacterium Synechococcus sp. PCC 7002 (formerly known as Agmenellum quadruplicatum strain PR-6) was originally isolated in 1961 by Chase Van Baalen from an onshore, marine mud flat sample derived from fish pens on Maguyes Island, La Parguera, Puerto Rico. The organism grows in brackish (euryhaline/marine) water and is unicellular but tends to form short filaments of two to four cells during exponential growth at the temperature optimum of 38 degrees C. The strain is extremely tolerant of high light intensities and has been grown at light intensities equivalent to two suns. This unique combination of physiological and genetic properties have long made this strain an important model system to studies of the oxygenic photosynthetic apparatus, the regulation of carbon and nitrogen metabolism, and other aspects of cyanobacterial physiology and metabolism.