Pre_GI: SWBIT SVG BLASTP

Query: NC_010516:3807780 Clostridium botulinum B1 str. Okra, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003911:4001094 Silicibacter pomeroyi DSS-3, complete genome

Lineage: Ruegeria pomeroyi; Ruegeria; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Formerly Silicibacter pomeroyi, his marine bacterium is a member of the Roseobacter clade and was isolated off of the coast of Georgia in 1998. Dimethylsulfoniopropionate-degrading bacterium. Capable of degrading the organic sulfur compound DMSP (dimethylsulfoniopropionate) and can metabolize a number of sulfur compounds. DMSP is synthesized by marine algae and the degradation product dimethylsulfide contributes to the global sulfur cycle.