Pre_GI: SWBIT SVG BLASTP

Query: NC_010503:327517 Ureaplasma parvum serovar 3 str. ATCC 27815 chromosome, complete

Lineage: Ureaplasma parvum; Ureaplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: This organism (Ureaplasma urealyticum biovar 1) is normally found as a commensal organism in the human genital tract. As an opportunistic pathogen, it can cause a sexually-transmitted disease and is recognized as causing non-chlamydial non-gonococcal urethritis. It can also cause obstetric complications in pregnant women, severe infections in infants, as well as meningitis. Like other Mollicutes, it is a wall-less bacterium and has undergone marked genome reduction. This organism appears to generate ATP through the hydrolysis of urea by the urease enzyme.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.