Pre_GI: SWBIT SVG BLASTP

Query: NC_010475:2896000 Synechococcus sp. PCC 7002, complete genome

Lineage: Synechococcus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: The cyanobacterium Synechococcus sp. PCC 7002 (formerly known as Agmenellum quadruplicatum strain PR-6) was originally isolated in 1961 by Chase Van Baalen from an onshore, marine mud flat sample derived from fish pens on Maguyes Island, La Parguera, Puerto Rico. The organism grows in brackish (euryhaline/marine) water and is unicellular but tends to form short filaments of two to four cells during exponential growth at the temperature optimum of 38 degrees C. The strain is extremely tolerant of high light intensities and has been grown at light intensities equivalent to two suns. This unique combination of physiological and genetic properties have long made this strain an important model system to studies of the oxygenic photosynthetic apparatus, the regulation of carbon and nitrogen metabolism, and other aspects of cyanobacterial physiology and metabolism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005956:1402500 Bartonella henselae str. Houston-1, complete genome

Lineage: Bartonella henselae; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella henselae str. Houston-1 (ATCC 49882) was isolated from human blood in Houston Texas. Causative agent of cat scratch fever. This group of alpha proteobacteria are unique among pathogens in that they cause angiogenic lesions. This organism was identified as the causative agent of cat scratch fever, a disease found commonly in children or in immunocompromised adults. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells.