Pre_GI: SWBIT SVG BLASTP

Query: NC_010407:2038499 Clavibacter michiganensis subsp. sepedonicus chromosome, complete

Lineage: Clavibacter michiganensis; Clavibacter; Microbacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Causative agent of bacterial ring rot. Isolated from infected potato. This organism was first described and classified in 1914 as "Bacterium sepedonicus" and is considered a major plant pathogen. It is a phytopathogenic actinomycete that causes wilt and tuber rot in potato, which is a plant vascular disease with very high bacterial titers. Pathogenicity is believed to be associated with the presence of two plasmids, pCSL1 and pCSL2. This species is subdivided into five subspecies: michiganensis, sepedonicus, nebraskensis, tesselarius and insidiosus each of which infects specific hosts: tomato, potato, corn, wheat and alfalfa, respectively. Members of the Clavibacter genus are known to produce antimicrobial compounds.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010407:410918 Clavibacter michiganensis subsp. sepedonicus chromosome, complete

Lineage: Clavibacter michiganensis; Clavibacter; Microbacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Causative agent of bacterial ring rot. Isolated from infected potato. This organism was first described and classified in 1914 as "Bacterium sepedonicus" and is considered a major plant pathogen. It is a phytopathogenic actinomycete that causes wilt and tuber rot in potato, which is a plant vascular disease with very high bacterial titers. Pathogenicity is believed to be associated with the presence of two plasmids, pCSL1 and pCSL2. This species is subdivided into five subspecies: michiganensis, sepedonicus, nebraskensis, tesselarius and insidiosus each of which infects specific hosts: tomato, potato, corn, wheat and alfalfa, respectively. Members of the Clavibacter genus are known to produce antimicrobial compounds.