Pre_GI: SWBIT SVG BLASTP

Query: NC_010322:1520973 Pseudomonas putida GB-1 chromosome, complete genome

Lineage: Pseudomonas putida; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Pseudomonas putida strain GB-1, a fresh water, Gram-negative gamma-proteobacterium, is a genetically tractable, robust manganese (Mn) oxidizer, and as such, is an ideal model for unraveling the catalytic mechanism for, and the molecular regulation of Mn(IV) oxide production and its eventual accumulation on the cell surface at the onset of stationary phase. Since its isolation from Green Bay nearly 20 years ago by Ken Nealson’s group (then at the Center for Great Lakes Studies, Univ. Wisconsin-Milwaukee, USA), it has been the non spore-forming, model organism (along with the closely-related strain MnB1) for molecular genetic studies of Mn(II) oxidization, protein transport and biofilm formation and for biochemical studies on protein purification and Mn(III)-pyoverdine binding. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. As they are metabolically versatile, and well characterized, it makes them great candidates for biocatalysis, bioremediation and other agricultural applications. Certain strains have been used in the production of bioplastics.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012560:1564500 Azotobacter vinelandii DJ, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.