Pre_GI: SWBIT SVG BLASTP

Query: NC_010163:63209 Acholeplasma laidlawii PG-8A chromosome, complete genome

Lineage: Acholeplasma laidlawii; Acholeplasma; Acholeplasmataceae; Acholeplasmatales; Tenericutes; Bacteria

General Information: Acholeplasma species are widely distributed in the nature and can be detected and isolated from different plant, avian, and mammalian sources. Acholeplasma laidlawii is found in soil, compost, wastewaters, cell cultures as well as in human tissues and in many animal species (birds, bovine, goat, equine, ovine, porcine, feline, rodent, primates). Acholeplasma laidlawii is capable of synthesizing glucose using a pyrophosphate-dependent 6-phosphofructokinase which has also been detected in other acholeplasmas (a good example of flexible metabolism). Additionally, Acholeplasma laidlawii and phytoplasmas are the only mollicutes known to use the universal genetic code, in which UGA is a stop codon.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011184:2723000 Vibrio fischeri MJ11 chromosome I, complete sequence

Lineage: Aliivibrio fischeri; Aliivibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: This strain was isolated from a pinecone fish, Monocentris japonica, light-emitting organs in Japan. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. This organism is found in marine environments and was originally named by Bernard Fischer during a sea voyage in the 1800s. It is a symbiont in fish and squids and is responsible for light generation in those organisms, which use it as a defense mechanism to avoid predators.