Pre_GI: SWBIT SVG BLASTP

Query: NC_010162:573709 Sorangium cellulosum 'So ce 56', complete genome

Lineage: Sorangium cellulosum; Sorangium; Polyangiaceae; Myxococcales; Proteobacteria; Bacteria

General Information: Sorangium cellulosum 'So ce 56' produces a large number of bioactive compounds, such as, the antifungal soraphen and the anticancer agent epothilone. This organism, like other myxobacteria, undergoes a complex development and differentiation pathway. When cell density increases, the organism switches to "social motility" where aggregates of cells can gather together into masses termed fruiting bodies that may consist of up to 100 000 cells. The motility system is not dependent on flagella like most bacteria, but instead relies on twitching pili: short extracellular appendages that may function analogously to oars in a rowboat. The myxobacteria have proved to be a rich source of novel natural products. Sorangium cellulosum produces a number of antibacterial, antifungal and cytotoxic substances which are being studies for therapeutic applications.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010407:316320 Clavibacter michiganensis subsp. sepedonicus chromosome, complete

Lineage: Clavibacter michiganensis; Clavibacter; Microbacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Causative agent of bacterial ring rot. Isolated from infected potato. This organism was first described and classified in 1914 as "Bacterium sepedonicus" and is considered a major plant pathogen. It is a phytopathogenic actinomycete that causes wilt and tuber rot in potato, which is a plant vascular disease with very high bacterial titers. Pathogenicity is believed to be associated with the presence of two plasmids, pCSL1 and pCSL2. This species is subdivided into five subspecies: michiganensis, sepedonicus, nebraskensis, tesselarius and insidiosus each of which infects specific hosts: tomato, potato, corn, wheat and alfalfa, respectively. Members of the Clavibacter genus are known to produce antimicrobial compounds.