Pre_GI: SWBIT SVG BLASTP

Query: NC_010162:193536 Sorangium cellulosum 'So ce 56', complete genome

Lineage: Sorangium cellulosum; Sorangium; Polyangiaceae; Myxococcales; Proteobacteria; Bacteria

General Information: Sorangium cellulosum 'So ce 56' produces a large number of bioactive compounds, such as, the antifungal soraphen and the anticancer agent epothilone. This organism, like other myxobacteria, undergoes a complex development and differentiation pathway. When cell density increases, the organism switches to "social motility" where aggregates of cells can gather together into masses termed fruiting bodies that may consist of up to 100 000 cells. The motility system is not dependent on flagella like most bacteria, but instead relies on twitching pili: short extracellular appendages that may function analogously to oars in a rowboat. The myxobacteria have proved to be a rich source of novel natural products. Sorangium cellulosum produces a number of antibacterial, antifungal and cytotoxic substances which are being studies for therapeutic applications.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006351:881655 Burkholderia pseudomallei K96243 chromosome 2, complete sequence

Lineage: Burkholderia pseudomallei; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was a clinical isolate from Thailand. The genome of this organism carries many genomic islands as compared to the related organism B. mallei, suggesting extensive horizontal transfer. Opportunistic pathogen. This species is an opportunistic pathogen and can cause pneumonia, bacteremia, and melioidosis. It is normally found in terrestrial environments and has been recovered from rice paddies and moist tropical soil. It is endemic in Asia and Australia, but can be found in other parts of the world. The organism can exist intracellularly and can spread through the bloodstream (bacteremia).