Pre_GI: SWBIT SVG BLASTP

Query: NC_010161:1844452 Bartonella tribocorum CIP 105476, complete genome

Lineage: Bartonella tribocorum; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This organism was isolated from the blood of wild rats and from fleas obtained from wild rats. Transmission of these organisms is often through an insect vector. Once in a host, this intracellular pathogen is internalized by an actin-dependent mechanism, and primarily targets endothelial cells, although other cells can be infected. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells. This organism is genetically related to Bartonella elizabethae which was isolated from a case of endocarditis in a human.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012881:3727150 Desulfovibrio salexigens DSM 2638, complete genome

Lineage: Desulfovibrio salexigens; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Isolation: mud in British Guyana; Temp: Mesophile; Temp: 37 C; Habitat: Mud. Desulfovibrio are sulfate-reducing bacteria which reduce sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. These organisms typically grow anaerobically, although some can tolerate oxygen, and they utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. These organisms are responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.