Pre_GI: SWBIT SVG BLASTP

Query: NC_010159:3120642 Yersinia pestis Angola, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated prior to 1985 and belongs to the antiqua biovar. It can ferment rhamnonse and melibiose which is a property usually associated with Yersinia pseudotuberculosis. Strain Angola belongs to a group of atypical Yersinia pestis strains with genotypic similarities that are intermediate between Y. pestis and Y. pseudotuberuclosis strains. Genotypic studies indicate that strain Angola is the oldest Y. pestis strain analyzed to date. It carries three plasmids that are similar to other Y. pestis plasmids but have aberrant sizes. The critical virulence factor, the V antigen, is different than that encoded by typical strains of Y. pestis and there is a deletion that affects the F1 operon. Strain Angola has been shown to be virulent by aerosol in mice.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005126:3812054 Photorhabdus luminescens subsp. laumondii TTO1, complete genome

Lineage: Photorhabdus luminescens; Photorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated on Trinidad and Tobago. It is a symbiont of the nematode Heterorhabditis bacteriophora. Bioluminescent bacterium. This organism is unusual in that it is symbiotic within one insect, and pathogenic in another, the only organism that is known to exhibit this dual phenotype. Enzymes are then released by the bacteria that result in rapid degradation of the insect body, allowing both bacteria and nematode to feed and reproduce. During this period Photorhabdus luminescens releases bacteriocidal products, including antibiotics and bacteriocins, that prevent infection of the larva by competitive microbes. The result is promotion of Photorhabdus luminescens-nematode interactions that result in continuation of the symbiotic relationship. In order to engage in a symbiotic relationship with the nematode and a pathogenic one with the insect larva, the bacterium encodes specific factors that encourage both. These include a large number of genes that code for secreted toxins and enzymes, as well as genes that encode products for the production of antibiotics and bacteriocins. Secretion of these products occurs by an array of systems including type I, type II, and type III secretion systems. The type III system is closely related to the Yersinia plasmid-encoded type III system. Genes that promote symbiotic relationships are also encoded on genomic islands on the chromosome including some that affect nematode development. Virulence genes appear to be active during exponential growth. Symbiotic genes appear to function during stationary phase (post-exponential) growth. The switch from one state to another is controlled. Photorhabdus luminescens is capable of giving off light, a complex process that requires the products of the lux operon.