Pre_GI: SWBIT SVG BLASTP

Query: NC_010125:1651687 Gluconacetobacter diazotrophicus PAl 5, complete genome

Lineage: Gluconacetobacter diazotrophicus; Gluconacetobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) was isolated from sugarcane roots in Brazil and will be used for comparative analysis. Nitrogen-fixing plant symbiont. This acid-tolerant organism is endophytic and colonizes internal plant tissues, establishing a symbiotic relationship with its host. This bacterium has been found in sugarcane, coffee, rice, tea, and other plants. The nitrogen-fixation systems of the bacterium provide the plant with essential nitrogenous compounds while the plant provides a protected environment for the bacterium to grow in. Nitrogen-fixation is important for sugarcane production, and this organism can fix nitrogen even in the presence of nitrate.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_020211:4168189 Serratia marcescens WW4, complete genome

Lineage: Serratia marcescens; Serratia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was discovered in 1819 by Bizio who named the organism after the Italian physicist Serrati. It was considered a nonpathogenic organism until late in the 20th century, although pathogenicity was noted as early as 1913. Serratia marcescens is an opportunistic human pathogen that is increasingly associated with life-threatening hospital-acquired infections. It is an environmental organism that has a broad host range, and is capable of infecting vertebrates and invertebrates, as well as plants. In humans, Serratia marcescens can cause meningitis (inflammation of the membrane surrounding the brain and spinal cord), endocarditis (inflammation of heart muscle) and pyelonephritis (inflammation of the kidneys). Many strains are resistant to multiple antibiotics. Environmental isolates are noted by production of the red pigment prodigiosin.