Pre_GI: SWBIT SVG BLASTP

Query: NC_010125:1651687 Gluconacetobacter diazotrophicus PAl 5, complete genome

Lineage: Gluconacetobacter diazotrophicus; Gluconacetobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) was isolated from sugarcane roots in Brazil and will be used for comparative analysis. Nitrogen-fixing plant symbiont. This acid-tolerant organism is endophytic and colonizes internal plant tissues, establishing a symbiotic relationship with its host. This bacterium has been found in sugarcane, coffee, rice, tea, and other plants. The nitrogen-fixation systems of the bacterium provide the plant with essential nitrogenous compounds while the plant provides a protected environment for the bacterium to grow in. Nitrogen-fixation is important for sugarcane production, and this organism can fix nitrogen even in the presence of nitrate.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015709:1459838 Zymomonas mobilis subsp. pomaceae ATCC 29192 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Country: United Kingdom; Isolation: Sick cider; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.