Pre_GI: SWBIT SVG BLASTP

Query: NC_010104:1096081 Brucella canis ATCC 23365 chromosome II, complete sequence

Lineage: Brucella canis; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Etiologic agent of canine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This bacterium is the causative agent of canine brucellosis. The main sources of infection are vaginal fluids of infected females and urine in males. The most significant symptoms are late abortions in bitches, epididymitis in males and infertility in both sexes, as well as generalized lymphadenitis, discospondylitis and uveitis. Human contagion is not frequent, although it has been reported, and is easily treated. B. canis can be differentiated from the other species of the genus Brucella (except B. ovis) in that it forms rugose colonies.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002695:4153394 Escherichia coli O157:H7 str. Sakai, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain of O157:H7 was isolated in a 1997 outbreak in Sakai, Japan. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.