Pre_GI: SWBIT SVG BLASTP

Query: NC_010079:575123 Staphylococcus aureus subsp. aureus USA300_TCH1516, complete

Lineage: Staphylococcus aureus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: USA300, a methicillin resistant strain of Staphylococcus aureus, has been implicated in epidemiologically unassociated outbreaks of skin and soft tissue infections among healthy individuals in at least 21 U.S. states, Canada and Europe. USA300 is also noted for its strong association with unusually invasive disease, including severe septicemia, necrotizing pneumonia and necrotizing fasciitis. Causes skin infections. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. This organism is a major cause of nosocomial (hospital-acquired) and community-acquired infections. S. aureus continues to be a major cause of mortality and is responsible for a variety of infections including, boils, furuncles, styes, impetigo and other superficial skin infections in humans. Also known to cause more serious infections particularly in the chronically ill or immunocompromised. The ability to cause invasive disease is associated with persistance in the nasal cavity of a host.

No Graph yet!

Subject: NC_002946:1786000 Neisseria gonorrhoeae FA 1090, complete genome

Lineage: Neisseria gonorrhoeae; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: A serum-resistant streptomycin-resistant proline-requiring strain isolated from a patient with disseminated gonococcal infections. Causes gonorrhea. One of two pathogenic Neisseria, this species causes the sexually transmitted disease (STD) gonorrhea, which is the leading reportable STD in adults in the USA. This human-specific organism colonizes and invades the mucosal surface of the urogenital epithelium, crosses the epithelial barrier, and ends up multiplying on the basement membrane. The Opa proteins are responsible for the opaque colony phenotype due to the tight junctions between adjacent Neisseria, and are also responsible for tight adherence to host cells. This organism, like Neisseria meningitidis, is also naturally competent for DNA uptake.