Pre_GI: SWBIT SVG BLASTP

Query: NC_010067:1116148 Salmonella enterica subsp. arizonae serovar 62:z4,z23:--, complete

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This subspecies (IIIa) is usually found associated with reptiles, although contact with infected animals can result in the spread of the organism to humans or animals such as turkeys. This strain was originally isolated from a cornsnake in 1986 in Oregon, USA. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002929:3305682 Bordetella pertussis Tohama I, complete genome

Lineage: Bordetella pertussis; Bordetella; Alcaligenaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was originally isolated from a patient with whooping cough and has been studied extensively for over 40 years. Causative agent of whooping cough. This group of organisms is capable of invading the respiratory tract of animals and causing severe diseases. They express a number of virulence factors in order to do this including filamentous hemagglutins for attachment, cytotoxins, and proteins that form a type III secretion system for transport of effector molecules into host cells. This organism, which is unable to persist in the environment, is a strict human pathogen that causes whooping cough. Once a common cause of death in children the development of a vaccine has greatly decreased the number of deaths due to Bordetella pertussis. However, this organism infects and estimated 39 million people and kills hundreds of thousands of people each year.