Pre_GI: SWBIT SVG BLASTP

Query: NC_010001:3473425 Clostridium phytofermentans ISDg, complete genome

Lineage: Lachnoclostridium phytofermentans; Lachnoclostridium; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria

General Information: Isolated from forest soil near the Quabbin Reservoir in Massachusetts, USA. This organism plays an important industrial and ecological role in the anaerobic fermentation of cellulose and produces economically significant levels of acetate and ethanol. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007426:205390 Natronomonas pharaonis DSM 2160, complete genome

Lineage: Natronomonas pharaonis; Natronomonas; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Isolated from Lake Gabara in Egypt. Extreme haloalkaliphilic archeon. Natronomonas pharaonis is able to survive at high salt and pH conditions which results in limited nitrogen availability through ammonium. In order to compensate for this, Natronomonas pharaonis has developed three systems to promote nitrogen assimilation: direct uptake of ammonia, uptake of nitrate, and uptake of urea. Another problem with high pH environments is the use of a proton gradient for the generation of ATP, which other alkaliphiles have adapted to by substitution of sodium ions for protons. However, this organism utilizes protons for ATP generation as determined by experimental data.