Pre_GI: SWBIT SVG BLASTP

Query: NC_009937:5033152 Azorhizobium caulinodans ORS 571, complete genome

Lineage: Azorhizobium caulinodans; Azorhizobium; Xanthobacteraceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This species is a stem-nodulating nitrogen-fixing organism isolated from Sesbania rostrata. Azorhizobium caulinodans ORS571 is a microsymbiont of the water-tolerant tropical legume Sesbania rostrata.A. caulinodans ORS571 is able to fix nitrogen in the free-living state, which is not the case for most rhizobia.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008463:3503576 Pseudomonas aeruginosa UCBPP-PA14, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is a human clinical isolate from a human burn patient. It is infectious in mice, Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. Opportunistic pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.