Query: NC_009925:2264858 Acaryochloris marina MBIC11017, complete genome
Lineage: Acaryochloris marina; Acaryochloris; ; Chroococcales; Cyanobacteria; Bacteria
General Information: Acaryochloris marina MBIC11017 was isolated from algae from the coast of the Palau Islands in the western Pacific. Marine cyanobacterium. Acaryochloris marina was first isolated as an epiphyte of algae. M. marina been isolated from a variety of habitats and locations, usually associated with algae but also as free-living organisms. This cyanobacterium produces an atypical photosynthetic pigment, chlorophyll d, as the major reactive agent. The oxygenic photosynthesis based on this pigment may have evolved as an acclimatization to far-red light environments, or an as intermediate between the red-absorbing oxygenic and the far-red-absorbing anoxygenic photosynthesis that uses bacteriochlorophylls. Because of the unusual ratio of chlorophyll a to chlorophyll d in this organism, it has been used as a model to study the spectrographic characteristics of the two pigments.
Subject: NC_010628:7493599 Nostoc punctiforme PCC 73102, complete genome
Lineage: Nostoc punctiforme; Nostoc; Nostocaceae; Nostocales; Cyanobacteria; Bacteria
General Information: The strain was isolated from a symbiotic association with the gymnosperm cycad Macrozamia sp. It typically grows in freshwater habitats. This genera of cyanobacteria are typically terrestrially-associated and are especially found in limestone or nutrient-poor soils. They are very similar to Anabaena spp. and historically they have been distinguished on the basis of morphological and life cycle characteristics. Nostoc spp. can grow heterotrophically or photoheterotrophically, and form heterocysts for nitrogen fixation. This organism can form nitrogen-fixing symbiotic relationships with plants and fungi such as the bryophyte Anthoceros punctatus. The relationship is relatively simple as compared to the Rhizobial symbiotic relationship. In the presence of the plant, hormogonia (short motile filaments) infect the plant, and then form long heterocyst-containing (nitrogen-fixing differentiated bacterial cells) filaments. The bacterial cell receives carbon sources in exchange for fixed nitrogen.