Query: NC_009881:896007 Rickettsia akari str. Hartford, complete genome Lineage: Rickettsia akari; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria General Information: This strain was isolated from mites in Hartford. Causative agent of Rickettsialpox. Members of this genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, are obligate intracellular pathogens. In both groups, the bacteria are transmitted via an insect, usually a tick, to a host organism where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Rickettsia akari causes a mild disease, Rickettsialpox, which is an acute fever-inducing illness transmitted by a hematophagous mite that infects the common house mouse and bites humans. Infection by this organism may be confused with anthrax due to the black eschar. This bacterium is a member of the spotted fever group of Rickettsiales and is endemic to New York, USA, but is also found in other cities in the USA, Russia, South Korea, and South Africa.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: Normal oral and gastrointestinal bacterium. This genus contains mostly obligately anaerobic bacilli. Many of the isolates are spindle-shaped, or fusiform. This organism belongs to the normal microflora of the human oral and gastrointestinal tracts. It is a very long and slender spindle-shaped bacillus with sharply pointed ends that is characterized by the ability to invade soft tissues. It acts as a bridge between early and late colonizers of the tooth surface, and exerts synergism with other bacteria in mixed infections. It is most frequently associated with periodontal diseases, as well as with some invasive human infections of the head and neck, chest, lung, liver and abdomen, and some anginas. One of the major amino acid and sugar fermentation pathways in Fusobacterium nucleatum produces butyric and acetic acids.