Pre_GI: SWBIT SVG BLASTP

Query: NC_009879:860925 Rickettsia canadensis str. McKiel, complete genome

Lineage: Rickettsia canadensis; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This organism was originally isolated from ticks in a field study on tick-transmitted diseases of small mammals in Canada. Member of the typhus group of Rickettsiales. Members of this genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, are obligate intracellular pathogens. In both groups, the bacteria are transmitted via an insect, usually a tick, to a host organism where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Rickettsia canadensis was originally thought to be a member of the typhus group of Rickettsiales, however, it is now thought to represent a distict group with the rickettsia.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012416:4973 Wolbachia sp. wRi, complete genome

Lineage: Wolbachia; Wolbachia; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Endosymbiont. Obligate intracellular bacterium infects around 20% of all insect species. Naturally infects Drosophila simulans and induces almost complete cytoplasmic incompatibility in its host. Wolbachia sp. subsp. Drosophila simulans (strain wRi) is an intracellular proteobacterium that infect insects as well as isopods, spiders, scorpions, mites, and filarial nematodes. It is maternally inherited and induces reproductive alterations of insect populations by male killing, feminization, parthenogenesis, or cytoplasmic incompatibility. In insect populations, Wolbachia sp. induce reproductive manipulations to enhance their own spreading. The most frequently observed reproductive abnormality is cytoplasmic incompatibility, where uninfected females are unable to produce offspring with infected males, whereas infected females can produce offspring with both infected and uninfected males, thus creating a reproductive advantage for infected females. Other spectacular effects of Wolbachia sp. infections are male embryo killing, feminization, and parthenogenesis induction.