Pre_GI: SWBIT SVG BLASTP

Query: NC_009879:107890 Rickettsia canadensis str. McKiel, complete genome

Lineage: Rickettsia canadensis; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This organism was originally isolated from ticks in a field study on tick-transmitted diseases of small mammals in Canada. Member of the typhus group of Rickettsiales. Members of this genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, are obligate intracellular pathogens. In both groups, the bacteria are transmitted via an insect, usually a tick, to a host organism where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Rickettsia canadensis was originally thought to be a member of the typhus group of Rickettsiales, however, it is now thought to represent a distict group with the rickettsia.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014014:153837 Mycoplasma crocodyli MP145 chromosome, complete genome

Lineage: Mycoplasma crocodyli; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Mycoplasma crocodyli was isolated from the joint of a crocodile with exudative polyarthritis. The siblingspecies of M. crocodyli, Mycoplasma alligatoris causes acute lethalprimary infection of susceptible hosts, notably American alligators.This pathogen is studied to understand the mechanisms and evolutionaryorigins of that virulence. A genome survey indicated that M. alligatorisuses sialidase (Nanl) and hyaluronidase (NagH) to generate fuel forglycolysis from host cell glycans. M. crocodyli, which does not causedisease in American alligators, possesses NagH but not Nanl, so damageto the host's extracellular matrix alone cannot explain the particularvirulence of M. alligatoris.