Pre_GI: SWBIT SVG BLASTP

Query: NC_009802:647901 Campylobacter concisus 13826, complete genome

Lineage: Campylobacter concisus; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: Campylobacter concisus 13826 is a gastrointestinal clinical isolate. Members of this genus are one of the most common causes of bacterial gastroenteritis (campylobacteriosis). Usually the symptoms are abdominal pain, fever, diarrhea, and cramps, but the illness can sometimes be fatal and some infected individuals develop a syndrome (Guillain-Barre) in which the nerves connecting the spinal cord to the brain are damaged. C. jejuni is the main cause of campylobacteriosis, but other species can also cause infection, including C. coli, C. upsaliensis, and C. concisus. Campylobacter concisus was first isolated from the human oral cavity in cases of gingivitis; however the role it plays in periodontal disease is unclear. This organism has also been isolated from children and immunocompromised patients with gastrointestinal disease. C. concisus is a genetically diverse species, comprised of at least four genomospecies.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008816:369074 Prochlorococcus marinus str. AS9601, complete genome

Lineage: Prochlorococcus marinus; Prochlorococcus; Prochlorococcaceae; Prochlorales; Cyanobacteria; Bacteria

General Information: This cyanobacterium was collected in the Arabian Sea at a depth of 50 meters and isolated by filter fractionation. It belongs to Clade HL-II, the most abundant group in the North Atlantic and North Pacific Oceans, often constituting over 90% of the total population. Marine cyanobacterium. This non-motile bacterium is a free-living marine organism that is one of the most abundant, as well as the smallest, on earth, and contributes heavily to carbon cycling in the marine environment. This cyanobacterium grows in areas of nitrogen and phosphorus limitation and is unique in that it utilizes divinyl chlorophyll a/b proteins as light-harvesting systems instead of phycobiliproteins. These pigments allow harvesting of light energy from blue wavelengths at low light intensity.